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Abstract. We study the influence of finite conductivity of metals on the Casimir effect. We put the em-
phasis on explicit theoretical evaluations which can help comparing experimental results with theory. The
reduction of the Casimir force is evaluated for plane metallic plates. The reduction of the Casimir energy
in the same configuration is also calculated. It can be used to infer the reduction of the force in the plane-
sphere geometry through the “proximity theorem”. Frequency dependent dielectric response functions of
the metals are represented either by the simple plasma model or, more accurately, by using the optical
data known for the metals used in recent experiments, that is Al, Au and Cu. In the two latter cases, the
results obtained here differ significantly from those published recently.

PACS. 03.70.+k Theory of quantized fields – 12.20.Ds Specific calculations –
42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps

1 Introduction

The Casimir force experienced by reflectors placed in vac-
uum is a macroscopic mechanical consequence of quantum
fluctuations of electromagnetic fields [1]. Despite its rela-
tively small magnitude, it has been observed in a number
of “historic” experiments [2–5]. A much better experimen-
tal precision has been reached in recent experiments [6,7]
which should now allow for an accurate comparison with
theory. Clearly this requires not only a detailed control
of the experiments but also a careful theoretical estima-
tion of the various corrections corresponding to the differ-
ences between real experiments and the idealized Casimir
situation.

The present paper is focussed on the estimation of cor-
rections associated with the non ideal behavior of metal-
lic reflectors. Additional corrections due to the effect of
non-zero temperature and the geometry of the cavity have
also to be mastered before an agreement of experimental
results with theoretical expectations can be claimed. A
general discussion of the corrections to Casimir formulas
is presented in the next section. In particular, we recall
how the Casimir force measured in the plane-sphere ge-
ometry may be inferred from the Casimir energy in the
plane-plane geometry by using the so-called “proximity
theorem”.

We then focus attention on our main topic which is
the evaluation of the reduction factor of Casimir force
and Casimir energy for plane metallic plates in the limit
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of a large surface. We first compute the reduction factors
obtained when describing the dielectric functions with a
plasma model. This computation covers the whole range of
distances large or small with respect to the plasma wave-
length. The analytical expression of the force in the limit
of small distances is also derived.

The plasma model is not a good description of the di-
electric constant at low frequencies because it ignores the
relaxation of electrons responsible for optical response of
metals. This is why we also investigate the Drude model
which accounts for this relaxation. We finally discuss in de-
tail a more accurate description of the dielectric constant
based on the optical data known for the metals. We con-
centrate on the three metals, aluminium, gold and copper,
used in recent experiments and give the reduction factors
for the whole range of experimentally explored distances.
For Au and Cu, we obtain results differing significantly
from recently published ones [8].

2 Corrections to the Casimir formula

In the original point of view [1], the Casimir effect is de-
rived from the change of the total energy of vacuum due to
the presence of two plane perfect reflectors. In this global
approach, the Casimir energy is the part EC of vacuum
energy depending on the plate separation L

EC = A
~cπ2

720L3
· (1)

This energy is proportional to the surface A of the reflec-
tors in the limit of a large surface, the Planck constant ~
and the speed of light c. The Casimir force FC between the
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two reflectors is then derived from this position dependent
energy

FC = −dEC

dL
= A

~cπ2

240L4
· (2)

Being proportional to the surface, it defines a pressure
which depends only on the distance L and the two funda-
mental constants ~ and c. Conventions of sign have been
chosen so that both numbers (1, 2) are positive with the
significance that the Casimir force is attractive and the
Casimir energy is a binding energy.

In contrast with this global point of view, the Casimir
force may also be understood as a local quantity, namely
the radiation pressure exerted upon mirrors by vacuum
fluctuations which are modified by the presence of the re-
flectors. This local approach makes it much easier to deal
with corrections of Casimir formulas (1, 2). In a remark-
able work, Lifshitz gave a general formula for the Casimir
force between two plane plates characterized by their di-
electric response functions [9]. In particular his formula
accounts for the finite reflectivity of metallic mirrors and it
was used to deduce a first order correction for the plasma
model of metals [10]. Since the dielectric constant is large
at frequencies smaller than the plasma frequency ωP, the
Casimir formula is recovered at distances larger than the
plasma wavelength

λP =
2πc
ωP
· (3)

At frequencies larger than ωP in contrast, the mirror has a
poor reflectivity so that the force is reduced with respect
to (2) at distances of the order of the plasma wavelength
λP which lies in the sub-µm range. The force may thus
be written in terms of a factor ηF which measures the
reduction of the force with respect to the case of perfect
mirrors

F = ηFFC. (4)

The expression of the reduction factor is read at long
distances as [11,12]

ηF ' 1− 8
3π

λP

L
⇐ λP

L
� 1. (5)

In the following we will also introduce a reduction factor
ηE for the Casimir energy E

E =
∫ ∞
L

F (x) dx = ηEEC. (6)

The Lifshitz formula also contained thermal corrections
to the Casimir effect usually studied at zero temperature.
These corrections are significant at distances larger than
or of the order of a typical length [9]

λT =
~c
kBT

(7)

where kB is the Boltzmann constant and T the temper-
ature. At room temperature this length is of the order

of a few µm. Hence thermal corrections become signifi-
cant for distances for which the mirrors can be considered
as nearly perfect reflectors. Well-established estimations
of thermal corrections for perfect mirrors may thus be
used to evaluate the effect of temperature [12–14]. This
effect is found to be negligible at distances smaller than
1 µm and to become dominant at distances larger than
5 µm [7,15].

The Lifshitz formula has been derived for plane plates
in the limit of large transverse surface and large longi-
tudinal optical depth. But recent experiments have been
performed in a plane-sphere geometry which makes eas-
ier the control of geometry and, in particular, the precise
control of the distance between plates [6,7]. Furthermore,
mirrors are often built as multilayered structures rather
than as single plates with a large optical depth. Finally
the roughness of the metal/vacuum interfaces may also
play an important role. These features have to be taken
into account in an accurate estimation.

We will not present a detailed analysis of the geomet-
rical effects in this paper. It is however worth recalling
that the Casimir force in the plane-sphere geometry is
usually estimated from the so-called “proximity theorem”.
Basically this theorem amounts to evaluating the force by
adding the contributions of various distances as if they
were independent. In the plane-sphere geometry the force
Fpt evaluated from the proximity theorem is thus read
as [16–19]

Fpt = 2πRE = 2πRηEEC (8)

where R is the radius of the sphere and E the Casimir
energy evaluated in the plane-plane configuration for the
same distance L, this distance being defined as the dis-
tance of closest approach in the plane-sphere geometry.
Hence, the reduction factor ηE for the Casimir energy eval-
uated in the plane-plane configuration in (6) can be used
to infer the reduction factor for the force measured in the
plane-sphere geometry through the proximity theorem.

At this point we have to emphasize that our calcula-
tions are intended to provide a reliable estimation of the
Casimir force and energy between two metal plates in the
plane-plane geometry. Clearly, they do not give any indi-
cation of the degree of reliability of the proximity theorem.
Since it is well-known that the Casimir force is not an addi-
tive quantity one cannot but question an estimation based
on an addition procedure [20]. Precisely, one can hardly
admit that the proximity theorem provides reliable esti-
mations at the level of accuracy which is now aimed at,
that is the % level. As already discussed, these problems
are not the main task of this paper which is focussed on
the effect of imperfect reflection of metallic mirrors. The
same remarks apply to another aspect of the geometry,
that is the roughness effect which has also been found to
play a significant role [19,21].

3 The description of mirrors

As predicted by Casimir in his founding article [1] the
divergences associated with the infiniteness of vacuum
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energy do not play a real role in the estimation of the
Casimir effect thanks to a general physical reason: real
mirrors are certainly transparent at the limit of infinite
frequencies. This idea was implemented in the Lifshitz
theory [9] and it has a much broader range of validity.
Real mirrors may always be characterized by frequency
dependent reflectivity amplitudes which provide a finite
expression for Casimir energy as soon as general properties
of unitarity, causality and high-frequency transparency
are accounted for [22]. Dispersive optical response func-
tions necessarily include dissipation mechanisms so that
incoming electromagnetic fields and additional Langevin
fluctuations coming from matter have to be treated si-
multaneously [23]. The description of mirrors through
well-behaved reflectivity amplitudes [22] automatically in-
cludes a proper description of these fluctuations [24].

The two mirrors form a Fabry-Perot cavity which
enhances or decreases field fluctuations depending on
whether their frequency is resonant or not with cavity
modes. This modulation of intracavity energy of vacuum
fluctuations, integrated over frequencies and incidence an-
gles corresponding to the various modes, is responsible
for the Casimir force [22]. Using causality properties, the
force can be written as an integral over imaginary frequen-
cies and wavevectors [9]. After these transformations, the
Casimir force may be written in terms of a reduction fac-
tor (4) which takes the following form adapted from [22]

ηF =
120
π4

∫ ∞
0

dKK2

∫ K

0

dΩ
∑
p

r2
p

e2K − r2
p

K = κL Ω = ω
L

c
(9)

rp denotes the reflection amplitude for one of the two mir-
rors and a given polarization p. This notation is a short-
hand for rp (iω, iκ) where iω is the imaginary frequency
and iκ the imaginary wavevector along the longitudinal
direction of the Fabry-Perot cavity. Ω and K stand for
the frequency and wavevector measured in dimensionless
units with the help of the cavity length L. The reflection
amplitudes are supposed to be identical for the two mir-
rors. Otherwise r2

p has to be replaced by the product of
the two amplitude reflection coefficients.

In the limit of perfect mirrors
(
r2
p = 1

)
the Casimir

formula (2) is recovered (ηF = 1). In the general case, the
factor ηF measures the reduction of the force between real
mirrors with respect to the case of perfect mirrors. We may
also write a reduction factor (6) for the Casimir energy

ηE = −180
π4

∫ ∞
0

dKK

∫ K

0

dΩ
∑
p

log
(
1− r2

pe−2K
)
.

(10)

Let us stress again that the expressions (9, 10) give only
the corrections to Casimir force and energy associated
with the finite conductivity of metallic plates. They corre-
spond to plane reflecting plates at the limit of a large sur-
face, assume a null temperature and disregard the problem

of roughness. As discussed in the previous section, the fac-
tor ηE may be used to infer the force in the plane-sphere
geometry through the proximity theorem.

Assuming furthermore that the metal plates have a
large optical thickness, the reflection coefficients rp corre-
spond to the ones of a mere vacuum-metal interface [25]

r⊥ = −
√
ω2 (ε (iω)− 1) + c2κ2 − cκ√
ω2 (ε (iω)− 1) + c2κ2 + cκ

r|| =

√
ω2 (ε (iω)− 1) + c2κ2 − cκε (iω)√
ω2 (ε (iω)− 1) + c2κ2 + cκε (iω)

(11)

rp still stands for rp (iω, iκ) and ε (iω) is the dielectric
constant of the metal evaluated for imaginary frequencies.
Taken together, the relations (9, 11) reproduce the Lifshitz
expression for the Casimir force [9]. We however emphasize
that (9) can be used to go beyond the Lifshitz expression
since it allows one to deal with more general mirrors than
those considered in (11).

As an example we consider mirrors built as metallic
slabs having a finite thickness. For a given polarization, we
denote by ρ the reflection coefficient (11) corresponding to
a single vacuum/metal interface and we write the reflec-
tion amplitude r for the slab of finite thickness through a
Fabry-Perot formula

r = ρ
1− e−2δ

1− ρ2e−2δ
,

δ =
D

c

√
ω2 (ε (iω)− 1) + c2κ2. (12)

This expression has been written directly for imaginary
frequencies. The parameter δ represents the optical length
in the metallic slab and D the physical thickness. The
single interface expression (11) is recovered in the limit of
a large optical thickness δ � 1. With the plasma model,
this condition just means that the thickness D is larger
than the plasma wavelength λP.

In order to discuss recent experiments it may be useful
to write the reflection coefficients for multilayer mirrors.
For example one may consider two-layer mirrors with a
layer of thickness D of a metal A deposited on a large
slab of metal B in the limit of large thickness. The reflec-
tion formulas are then obtained as in [26] but accounting
for oblique incidence. The equations (9, 10) may then be
calculated for the two-layer mirrors. This could help to
obtain more accurate estimations for the experiments as
soon as physical characteristics of the two-layer mirrors
are precisely known. In the present paper we use reflec-
tion amplitudes (11) which are well adapted to a general
discussion since they depend on a smaller number of pa-
rameters.

4 Plasma and Drude model

We will now evaluate the reduction factor for the Casimir
force when the frequency dependent dielectric function
may be represented by the plasma or Drude model.
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Fig. 1. Reduction of the Casimir force compared to the force
between perfect mirrors, when the finite conductivity may be
described by a plasma model (solid line) or a Drude model
(dashed line) with a ratio γ/ωP equal to 4×10−3. The difference
due to the relaxation parameter has only a small effect on
the calculation of the Casimir force. The dotted-dashed line
corresponds to the short distance asymptotic behavior.

We begin with the plasma model where the quantities
ε (ω) and ε (iω) are represented as follows

ε (ω) = 1− ω2
P

ω2
,

ε (iω) = 1 +
ω2

P

ω2
· (13)

Using expressions (11, 13) it is possible to obtain the re-
duction factor (9) defined for the Casimir force through
numerical integrations. The result is drawn in Figure 1,
as a function of the dimensionless parameter L/λP, that
is the ratio between the distance L and the plasma wave-
length λP. As expected the Casimir formula is reproduced
at large distances (ηF → 1 when L/λP � 1). At dis-
tances smaller than λP in contrast, a significant reduction
factor is obtained. This factor ηF scales as L/λP at the
limit of small distances. This means that the whole expres-
sion (4) of the Casimir force is a power law which under-
goes a change of exponent when the distance L crosses the
plasma wavelength λP characterizing the optical response
of metals. This is quite analogous to the crossover discov-
ered by Casimir and Polder for the variation of van der
Waals force with respect to the interatomic distance [27].

An asymptotic law of variation for ηF varying as L/λP

at small distances has been proposed repeatedly since
Lifshitz [9]. We have been able to derive from (9, 11, 13)
a precise value for the coefficient appearing in this law

L� λP → ηF = α
L

λP

α =
30
π2

∫ ∞
0

dK e−
3K
4

 K2√
sinh K

2

− K2√
cosh K

2


' 1.193. (14)

This implies a similar behavior for the reduction factor ηE

with a different proportionality coefficient

L� λP → ηE =
3
2
α
L

λP
· (15)

Hence, ηE is larger than ηF at short distances, which
means a less important reduction with respect to the case
of perfect mirrors. The asymptotic law (14) valid at short
distances, taken with its equivalent (5) at large distances,
is an important feature of the variation of ηF with L which
is not obeyed by the approximants which have been used
to discuss recent experimental results [8,15]. These ap-
proximants are compared with the exact expression of the
reduction factor for the plasma model in Appendix A.

As already discussed, the plasma model does not pro-
vide a good description of the dielectric response of met-
als. The main reason is that the dielectric function ε (ω)
is real in (13) and, therefore, does not account for any dis-
sipative mechanism. A much better representation of the
dielectric function corresponding to the optical response
of conduction electrons is the Drude model [28]

ε (ω) = 1− ω2
P

ω (ω + iγ)

ε (iω) = 1 +
ω2

P

ω (ω + γ)
· (16)

This model describes not only the plasma response of con-
duction electrons with ωP still interpreted as the plasma
frequency but also their relaxation, γ being the inverse of
the electronic relaxation time.

The relaxation parameter γ is much smaller than the
plasma frequency. For Al, Au, Cu in particular, we will
find in the next section values for the ratio γ/ωP of the
order of 4×10−3. Hence relaxation plays a significant role
in the modeling of the dielectric constant only at frequen-
cies where the latter is much larger than unity. Stated in
different words, it has to be taken into account only when
the metallic mirror behaves as a nearly perfect reflector.
This suggests that the relaxation will not have a large in-
fluence on the Casimir effect. This qualitative argument
is confirmed by the result of a numerical integration re-
ported in Figure 1. With a value of γ/ωP equal to 4×10−3,
that is of the order of the real values obtained for Al, Au,
Cu, the variation of ηF remains smaller than 2%. It thus
plays a marginal role at the level of accuracy aimed at but
it is easy and safer to take it into account.

5 Real metals

For metals like Al, Au, Cu, the dielectric constant de-
parts from the Drude model when interband transitions
are reached, that is when the photon energy reaches a
few eV. Hence, a more precise description of the dielectric
constant, taking into account the known data on optical
properties of these metals, has to be used for evaluating
the force in the sub-µm range.
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The dielectric response function for real frequencies
may be written in terms of real and imaginary parts ε′
and ε′′ obeying general causality relations

ε (ω) = ε′ (ω) + iε′′ (ω)

ε′ (ω)− 1 =
2
π
P
∫ ∞

0

xε′′ (x)
x2 − ω2

dx. (17)

Causality relations also allow one to obtain the dielectric
constant at imaginary frequencies ε (iω) from the func-
tion ε′′ (x) evaluated at real frequencies x, that is also the
oscillator strength characterizing the material [29]

ε (iω)− 1 =
2
π

∫ ∞
0

xε′′ (x)
x2 + ω2

dx. (18)

When discussing optical data, we will measure frequencies
either in eV or in rad/s, using the equivalence 1 eV =
1.537× 1015 rad/s.

The values of the complex index of refraction, mea-
sured through different optical techniques, are tabulated
as a function of frequency in several references [30–32]. Op-
tical data may vary from one reference to another. Avail-
able data do not cover the whole frequency range and they
have to be extrapolated. These two problems may cause
variations of the results obtained for ε (iω) and, therefore,
for the Casimir force. This is why we explain in detail how
we proceed from the input, the optical data, to the output
of the process, the reduction factors for Casimir force and
energy.

Figure 2 shows the values for ε′′(ω) as a function of fre-
quency ω for the three metals Al, Au and Cu. All data are
taken from [30,31] with a frequency range 0.04−1000 eV
for Al and 0.1−1000 eV for Au and Cu. A large num-
ber of points is available in these sources so that the in-
terpolation between these points does not raise any dif-
ficulty. However the data have to be extrapolated at low
frequencies to increase the domain over which the integra-
tions are performed. At energies around 0.1 eV the optical
properties are quite well-described by the contribution of
conduction electrons. Hence data available at these en-
ergies may be nicely fitted with a Drude model. For Al
the corresponding Drude parameters are given in [30] as
ωP = 11.5 eV and γ = 50 meV. For Au and Cu there
are not enough optical data at low frequencies to permit a
determination of the two parameters ωP and γ separately.
Here we use additional information namely the estimation
of ωP coming from solid state physics [28,29]. Precisely we
write

ω2
P =

4πNe2

m∗
=

Nq2

ε0m∗

N = ZNa (19)

where N is the number of conduction electrons per unit
volume, that is also the product of the number Z of elec-
trons per atom by the atomic number density Na, q is
the charge of electron and m∗ is the effective mass of con-
duction electrons. This mass is different of the mass m of
free electrons. The same correction may be described as
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Fig. 2. The imaginary part of the dielectric constant as a func-
tion of real frequency (upper graph) and the dielectric constant
as function of imaginary frequency (lower graph) for Al (solid
line), Au (dotted line) and Cu (dashed line). At low frequencies
the data fit a Drude model corresponding to the contribution
of conduction electrons. Peaks in the imaginary part of the
dielectric function correspond to deviations from the Drude
model associated with interband transitions.

a change of the effective number of conduction electrons
per atom from Z to Z∗. We keep the former description,
use Z = 1 for Cu and Au, and choose for effective masses
of conduction electrons the values m∗/m ' 1 for Au and
m∗/m ' 1.45 for Cu [33,34]. With these assumptions we
obtain nearly equal values for the plasma frequency of
Au and Cu, ωP = 9.0 eV. This corresponds to a plasma
wavelength of 136 nm for Au and Cu, to be compared
with the plasma wavelength of 107 nm for Al. Then the
optical data of [30] allow us to deduce the relaxation pa-
rameter γ fitting the low energy data points with a Drude
model. We obtain in this manner γ = 35 meV for Au
and γ = 30 meV for Cu. These values correspond respec-
tively to γ/ωP = 3.8 × 10−3 and γ/ωP = 3.3 × 10−3 to
be compared to γ/ωP = 4.4 × 10−3 for Al. Note that we
have given deliberately all the numerical values in this
paragraph with a limited accuracy since slightly differ-
ent values could have been obtained as well, starting from
different sources or using different criteria for choosing
the values. This problem of extrapolation of optical data
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at low frequencies is certainly a cause for systematical er-
rors in the estimation of the Casimir force.

The dielectric constant for imaginary frequencies ε (iω)
is then obtained by numerical integration of relation (18).
Of course, the integration cannot be performed over the
whole range [0,∞] of frequencies so that we have to give
details about the integration procedure. We are mainly
interested in experimentally explored plate separations in
the range 0.1−10 µm. These separations correspond to
frequencies in the range 0.1−10 eV. We thus need reliable
values for ε(iω) with ω ranging from 10−4 to 103 eV. To
this aim we have to integrate (18) over real frequencies
covering a still broader range 10−6−104 eV. In order to
test the integration procedure we have varied the integra-
tion range by half an order of magnitude which changed
the result by less than 1%. The curves obtained for the
three metals are shown in the lower graph of Figure 2. In
particular the curves for Au and Cu are nearly identical
over the whole range of frequencies.

The Casimir force and energy are then calculated by
numerical integration of equations (9, 10). The integra-
tion range is chosen as 10−4−103 eV in order to evalu-
ate the Casimir force for plate separations in the range
0.1−10 µm. The same test of the integration procedure
has been performed leading to an error less than 1.5% for
ηF and 2% for ηE. The limit of perfect reflectors has been
reproduced with an error less than 1%. Figure 3 shows the
reduction of the Casimir force and energy between metal-
lic mirrors with respect to perfectly reflecting mirrors for
the three metals. The force is reduced when going from Al
to Au and has nearly the same value for Au and Cu. This
directly reflects the behavior of the dielectric constants
ε(iω) which decrease along the same series in Figure 2. As
already discussed in the previous section the reduction ηE

is less pronounced than ηF.
We give in the following table a few numerical values

for the reduction factors ηF and ηE for the three metals
at three typical distances.

Al Au Cu

ηF [0.1 µm] 0.55 0.48 0.48
ηE [0.1 µm] 0.63 0.55 0.55
ηF [0.5 µm] 0.85 0.81 0.81
ηE [0.5 µm] 0.88 0.85 0.85
ηF [3.0 µm] 0.96 0.96 0.96
ηE [3.0 µm] 0.97 0.97 0.97

(20)

We remind once again that ηE is the reduction factor for
energy between two plane mirrors, that is also the estimate
of reduction factor for the force in the plane-sphere geom-
etry. From our analysis the factors ηF and ηE turn out to
be the same for Au and Cu. Incidentally, as the dielectric
constants of Au and Cu are nearly the same, mirrors built
with a layer of Au on a slab of Cu would not lead to differ-
ent results. This seems to solve a difficulty in the analysis
of experimental results of [6]. The values obtained here for
Al at 0.1 µm and Cu at 0.5 µm correspond to those found
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Fig. 3. Reduction of the Casimir force (upper graph) and en-
ergy (lower graph) between metallic reflectors with respect to
perfectly reflecting mirrors as a function of their distance L.
The three curves correspond to Al (solid line), Au (dotted line)
and Cu (dashed line).

in [8]. But significant differences appear for Au at 0.5 µm
where we find values of ηF and ηE exceeding by 23% and
18% respectively the values given in [8]. Furthermore the
agreement between our result for Cu at 0.5 µm and the
one in [8] appears to be an accidental crossing between
two curves having quite different behaviors as functions
of distances. Since these differences have important con-
sequences for the comparison of experimental results with
theory, we discuss them in detail in Appendix B.

6 Conclusion

The Casimir force has now been experimentally explored
at distances in the sub-µm range and the reduction of
the force due to finite conductivity of metals has been
observed. For an accurate comparison of the experimental
results with theory, it is necessary to dispose of precise
theoretical expectations.

In this paper we have presented a detailed analysis of
the influence of the imperfect reflection on the Casimir
force between two plane metallic plates. In particular,
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we have given a precise evaluation of the reduction factor
for metals used in recent experiments, that is Al, Au and
Cu. This factor becomes significant at distances smaller
than 1 µm and it reaches values of about 50% for the
smallest explored distances.

The reduction factor ηE calculated in the present pa-
per for the energy between plane plates can be used to
infer the reduction factor for the force in the plane-sphere
geometry if the proximity theorem is trusted. However the
accuracy of this theorem is not known. Other corrections
have also to be taken into account. Thermal corrections
are significant at distances larger than a few µm but have
not been seen in the experiment where these distances
were explored [6]. The roughness corrections are also ex-
pected to play an important role [19,21].

In these conditions it is premature to claim that a good
agreement has been reached between experiments and the-
ory. It is worth developing new experiments using either
the same techniques or different ones [35,36]. More work
is also needed on the theoretical side, in particular for ob-
taining more reliable estimations of the effect of geometry
and roughness on the Casimir force. Such efforts are cer-
tainly worthwhile not only because of the interest of reach-
ing conclusions on the Casimir force but also for making
it possible to control its effect when studying small short
range forces [37–40].

We wish to thank Ephraim Fischbach, Marc-Thierry Jaekel,
David Koltick, Vladimir Mostepanenko and Roberto Onofrio
for stimulating discussions.

Appendix A: The plasma corrections

In this appendix we compare the reduction factor ηF eval-
uated for the Casimir force from expressions (9, 11) using
the plasma model (13) with different approximants which
have been used to discuss recent experimental results (see
for example [8,15,19]).

The exact result is the solid line of Figure 1 reproduced
as the solid line in Figure 4. Its behavior at long distances
(L� λP) corresponds to the known development [18]

ηA = 1− 8
3π

λP

L
+

6
π2

(
λP

L

)2

(A.1)

drawn as long dashes A in Figure 4. Another interpolation
formula may be deduced from this behavior as [18]

ηB =
(

1 +
11
6π

λP

L

)− 16
11

· (A.2)

This formula, drawn as short dashes B in Figure 4,
presents the advantage of being positive at all distances
and also being a monotonic function of distance, two im-
portant features of the exact result. However it fails to re-
produce the asymptotic variation of ηF at small distances
(compare with (14)). Another approximant, obtained by

10-2 10-1 100 101 102

L/λP

10-2

10-1

100

101

ηF

A

B

C

Fig. 4. Reduction factor ηF for the Casimir force as a func-
tion of the ratio L/λP when the finite conductivity is described
by a plasma model (solid line). This curve is compared to dif-
ferent approximants (dashed lines) used in the literature and
described in the text. These approximants are reasonable at
large distances but depart from the exact result when L/λP

approaches unity.

developing ηB at the fourth order in λP/L, has sometimes
been used [15]

ηC = ηA −
38
3π3

(
λP

L

)3

+
931
9π4

(
λP

L

)4

· (A.3)

It is drawn as the dotted-dashed line C in Figure 4. On the
whole, Figure 4 clearly shows that all these approximants
fail to reproduce the correct behavior at distances smaller
than the plasma wavelength λP.

Incidentally an interesting approximant may be
defined by the following formula

ηU =
1

1 +
8

3π
λP

L

· (A.4)

It fits the known behavior of the exact result at the first-
order, but not the second-order one, in λP/L. It is pro-
portional to L/λP at small distances as the correct re-
sult (14). Moreover the coefficient 3π/8 has a value 1.178
very close to the proportionality coefficient α ' 1.193 ap-
pearing in (14), the relative difference being of the order
of 1%. Hence, ηU may be considered as a uniform approxi-
mant reproducing the variation of ηF over the whole range
of distances. It reproduces the exact result everywhere
with an error of at most 5%. This precision is however
not sufficient for it to be used in the place of the correct
result.

Appendix B: The case of copper

In this appendix, we compare the reduction factors ηF

and ηE obtained for copper from the computations of the
present paper and those of [8]. Both derivations are based
on the same procedure which we have already described
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in the text. Optical data taken from different references
agree reasonably well between each other. We however
point out that quite different techniques are used here
and in [8] for interpolating between available data and ex-
trapolating at low frequencies and that these differences
are responsible for significant deviations in the behaviors
of ηF and ηE as functions of the plate separation.

The upper graph of Figure 5 shows three different plots
of the imaginary part of the dielectric constant. The first
one is the one explained in the present paper with data
points taken from [30,31] (diamonds) and extrapolation at
low frequency with a Drude model (solid line in Fig. 5).
Our procedure is explained in more detail in the main
part of this paper. The corresponding Drude parameters, a
plasma frequency ωP = 9.0 eV and a relaxation parameter
γ = 30 meV are in reasonable agreement with existing
knowledge from solid state physics.

The second plot has been designed by ourselves as an
attempt to reproduce the computations of [8]. The tri-
angles are optical data taken from [32]. These data are
not exactly identical but they are in reasonable agree-
ment with those taken from [30,31]. However only three
data points are given in [32] for the frequency range
1014−2×1015 rad/s whereas a much larger number of data
points may be found in [30,31]. In contrast to our treat-
ment, a specific interpolation procedure had therefore to
be used in [8] to fill the gaps between the data points.
Although this procedure is not described explicitly in [8]
we have been able to reproduce a curve having the same
appearance (compare with Fig. 1a in [8]). This curve re-
sults from a linear interpolation between the data points
on a lin-lin scale. It appears clearly in Figure 5 that this
interpolation procedure produces bumps on the dielectric
response functions (dashed line) which are largely outside
the data known from [30,31]. Optical data are in fact con-
sistent with a linear interpolation on a log-log scale rather
than on a lin-lin scale. This is the first important differ-
ence between the two treatments. The second important
difference is associated with the extrapolation of data at
low frequencies. In [8] the data points were extrapolated
by a power law proportional to 1/ω starting from the low-
est frequency data available in [32]. The whole curve of
[8] is not at all consistent with a Drude model at frequen-
cies below 1015 rad/s. To summarize this presentation of
the dielectric function used in [8] we may say that it corre-
sponds to values too large in the range 1014−2×1015 rad/s
by a factor which can be more than 10 and too small below
1014 rad/s by a factor up to 6.

The case of low frequency extrapolation requires more
cautious discussions. As explained in the main part of
this paper, the optical data available for Cu do not per-
mit an unambiguous estimation of the two parameters ωP

and γ separately. Other couples of value can be chosen
which would also be consistent with optical data. To make
this point explicit, we have drawn a third plot in Fig-
ure 5 (dashed-dotted line) which corresponds to a Drude
model fitting the optical data of [32] and the low fre-
quency behavior of [8]. Obviously it does not reproduce
the extra bumps of [8]. The associated Drude parameters
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Fig. 5. Imaginary part of the dielectric constant as a function
of frequency (upper graph) and dielectric constant as function
of imaginary frequency (lower graph) for copper. The diamonds
are data points from reference [30,31] and the solid line is our
extrapolation at low frequencies of these data. The triangles
correspond to data points from [32]. The dashed line represents
the extrapolation at low frequencies and the interpolation be-
tween the last three data points as in [8]. The dotted-dashed
line corresponds to another extrapolation of the same data.
More detailed explanations are given in the text.

ωP = 7.5 eV and γ = 130 meV correspond to an effective
mass m∗/m ' 2.1 and to a ratio γ/ωP ' 1.7×10−2 which
are quite different from those used in our treatment. In
order to have an indication of the effect of the uncertain-
ties associated with optical data, we will however proceed
to the computations with this curve, too.

We now perform the calculations as explained in the
main part of the text. The lower graph in Figure 5 shows
the different results for the dielectric constant ε(iω) as
a function of imaginary frequency for the three different
dielectric functions. As expected from the previous discus-
sion, the values ε(iω) found in [8] are too small at frequen-
cies lower than 1014 rad/s but too large around 1015 rad/s
when compared to those deduced from our calculation.
This has a significant consequence for the evaluation of
the reduction factors ηF and ηE drawn in Figure 6 for a
plate separation ranging from 0.1 µm to 10 µm.

Our reconstruction of the computations of [8] repro-
duce pretty well the published results at the distance
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Fig. 6. Reduction factors ηF for the Casimir force (upper
graph) and ηE for the Casimir energy (lower graph) as a func-
tion of the plate separation L. The solid line corresponds to the
calculation of the present paper, the dashed line to the calcula-
tion in [8]. The dotted-dashed line corresponds to a calculation
with a Drude model fitting the optical data of [32] and the low
frequency behavior of [8].

of 0.5 µm for which numerical values are given. However,
the general behaviors of the curves are quite different.
The Casimir force and Casimir energy obtained from the
optical data used in [8] are too large at small distances
and too small at large distances. These features, which
are made explicit with values of ηE given in the following
table, are consistent with the discussions of the preceding
paragraphs. The three columns 1, 2, 3 correspond respec-
tively to the solid lines, dashed lines and dotted-dashed
lines of Figures 5 and 6.

1 2 3

ηE [0.1 µm] 0.55 0.60 0.49
ηE [0.5 µm] 0.85 0.85 0.79
ηE [3.0 µm] 0.97 0.94 0.93

(B.1)

The crossing of the results in columns 1 and 2 at the dis-
tance of 0.5 µm appears as an accidental compensation of
these two flaws. The relative difference between the two
results may be as large as 10%.

A claim of agreement between experiment and theory
could be based on a comparison of values of ηE obtained at
different distances with values in the column 1 or, perhaps,
in the column 3. As explained above, both columns cor-
respond to reasonable extrapolations of the optical data.
The advantage of column 1 over column 3 lies in values
of the Drude parameters in better accordance with the
knowledge in solid state physics. The difference between
columns 1 and 3 may be considered as giving an idea of
the uncertainties associated with the incompleteness of
optical data. In any case the two corresponding curves,
drawn as solid and dotted-dashed lines in Figure 6, have
similar dependences on the plate separation although the
absolute values are shifted from one curve to the other. In
contrast the dashed curve in Figure 6 which corresponds
to the calculations of [8] and crosses the two former curves
cannot be considered as consistent with the known optical
data.
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